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The relationship between canard explosion and coherent biresonance is analyzed by numerically investigating
a temporal dynamical model of CO oxidation on Pt surface. Canard explosion, manifesting itself by a dramatic
change in the amplitude and period of a periodic orbit within a very narrow interval of a control parameter,
is the result of multiple time scales in a dynamical system and is common in excitable systems. Coherent
biresonance, namely, two peaks on the signal-to-noise ratio (SNR) curve when varying noise intensity, is a
novel phenomenon of coherent resonance which is well-known in excitable systems. When the control parameter
is varied from a stable fixed point, crossing the supercritical Hopf bifurcation, one of the peaks that corresponds
to relatively larger noise intensity, keeps a constant height and position, while the other becomes higher and
moves to lower noise level. When we consider the case in which two control parameters are perturbed by
independent noise simultaneously, an interesting picture of one valley between two ridges appears on the 3D
surface of SNR.

Introduction

Canard explosion, a complex temporal behavior resulting
from multiple time scales in a dynamical system, has been
observed in physical,1,2 chemical,3-8 and biological9,10systems.
It is associated with a dramatic change of period and amplitude
of a periodic orbit within a very narrow interval of a control
parameter and has been well-understood in the context of
singular perturbation theory.11-13 As a certain control parameter
increases beyond the Hopf bifurcation point, the amplitude and
period of the limit cycle first increases slowly, with these small
amplitude oscillations being termed as canard trajectory; then
in an exponentially small neighborhood of some critical point,
the so-called canard point, the limit cycle explodes, becoming
a relaxation oscillator with much larger amplitude and period.
A schematic plot of canard explosion is shown in Figure 1.
Canard explosion has the same mathematical source as excit-
ability, and it is reasonable to try to find one when another is
present.3 Excitability is related to a system that is before the
Hopf bifurcation point and has only a stable steady state. If
perturbed slightly, the system would return to the steady state
immediately. Larger perturbations that are beyond a well-defined
threshold, however, would cause the system to return to the
steady state after a long excursion. This excitable property is
important for wave propagation in spatially extended systems.
Similar to the excitability of the steady state that is before the
Hopf bifurcation point, the oscillatory mode of the small limit
cycle (canard trajectory), which is after the Hopf bifurcation
point and separated from the large relaxation limit cycle by the
canard point, also displays excitable properties. The threshold
in this case is the distance to the canard point. Perturbations
that are large enough to drive the system through the canard
point would induce a large-amplitude relaxation cycle. The
connection of excitability and canard explosion suggests that
waves can also exist in the vicinity of the canard point and

behaves more complexly for it contains the phase information
of the canard trajectory other than a stable state.14 Moreover,
the abrupt increase of amplitude and period in canard explosion
induces a kind of parametric sensitivity, which is due to the
interplay of stable and unstable boundary layers, hence involves
strong nonlinearity that would even lead to chaos in some
cases.6,8,15Although canard explosion is expected to be difficult
to observe experimentally, their presence may be inferred from
the transition from harmonic oscillations to relaxation oscilla-
tions or the so-called mixed mode oscillations,7 which have been
observed in CO oxidation on Pt(110).16

On the other hand, for real systems, strictly speaking, noise
is never zero. In the last two decades, the constructive roles of* Corresponding author. E-mail address: hzhlj@ustc.edu.cn.

Figure 1. A schematic plot of trajectories before and after canard
explosion. Dot lines are nullclines. abca is a canard trajectory; abdca
is a relaxation loop after canard explosion.
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noise and disorder in nonlinear systems have been extensively
studied. It is now an active subject to researchers from various
fields of science that how noise would change the dynamics
and functional features of the deterministic system.17 Specifi-
cally, it has been demonstrated that there exists a “resonant”
noise intensity at which the response of a system to a periodic
force is maximally ordered, which is well-know as stochastic
resonance (SR), or the order of the response of an excitable
system shows a maximum in the absence of periodic forcing,
which is called coherent resonance (CR).18-25 Recently, attention
has been paid to internal noise that is inherent in chemical
reactions because of the stochastic nature of the elementary
processes including reaction and diffusion.26 If systems of finite
volume are concerned, internal noise must be included in the
dynamics, and similar results to external noise are obtained.27-35

Since the first observation of rate oscillation in catalytic CO
oxidation 35 years ago, dissipative structures in heterogeneous
catalytic reactions have been an attractive field in surface
science, not only for its richness and complexity, but also from
a practical point of view.36 A variety of “dissipative structures”37

have been observed in heterogeneous catalytic reactions, includ-
ing multistability, oscillation, chaos, wave, turbulence, and
pattern formation.38 To understand these interesting phenomena
which are also of practical importance, on the basis of
mechanisms that had been verified by experiments, various
dynamical models, successfully reproducing those experimen-
tally observed phenomena, have been put forward. These models
have been employed in testing hypotheses for reaction mech-
anisms and motivating and selecting further experimental
investigations to clarify vague mechanistic issues.39 Then,
progress has been made in controlling spatiotemporal pattern
formation in heterogeneous catalytic reactions by prepatterned
surface40 and in improving the reaction performance such as
selectivity and reaction rates by, for example, periodic perturba-
tions of reactant concentrations, temperature, or flow reversal.41

In the present paper, we investigate the response of the
reaction rate of CO oxidation on platinum to external noise.
We have done a simple work on the model before.42 The
dynamics of this system, which is described by three ordinary
differential equations, undergoes canard explosion shortly after
a supercritical Hopf bifurcation.7 Noise may drive the system
from the global steady state that is before the Hopf bifurcation
point into the region of canard trajectory or the region of large-
amplitude relaxation oscillation, the two regions being separated
by the canard point. The consecutive changes of the nature of
steady solutions in a narrow interval cause two maxima on the
effective signal-to-noise ration (SNR) curve, when varying noise
intensity. It may be called coherent biresonance, more concise
than the term of stochastic biresonance without external signal.42

Moreover, the two peaks show different behaviors when the
control parameter is varied. We think that canard explosion is
the very cause of two peaks, and their different behaviors can
be understood by considering the different properties of canard
trajectory and the relaxation oscillation. The result of this paper
also demonstrates a noise-select effect in the vicinity of the
canard point: the amplitude and period of reaction rate
oscillation are selected via noise intensity.

Model

The model we used in the present paper was developed to
describe the temporal dynamics of CO oxidation on the Pt (110)
surface. This Krischer-Eiswirth-Etrl model16 is a realistic
model for surface coverage and describes the experimental
phenomenon at ultrahigh-vacuum (UHV) conditions very well.

The mechanism of CO oxidation on platinum proceeds via the
Langmuir-Hinshelwood scheme, in which both CO and O2

have to adsorb onto the catalytic Pt surface before reacting with
each other

Here, the asterisk (*) denotes a free adsorption site, and the
subscript ad denotes an adsorbed species. There is an adsorbate-
driven surface structural transition based on the CO coverage,
which is essential for rate oscillations.

The above mechanism is modeled by the following three
equations:16

Here,pCO andpO2 are partial pressure of CO and O2, u is the
surface coverage of CO,V is the surface coverage of O, andw
is the fraction of the surface area exhibiting the 1× 1 structure.
The variablesu, V, andw must be in the interval [0, 1]. The
sticking coefficient of oxygen depends on the surface structure
and is given bysO ) wsO1 + (1 - w)sO2. The functionh(u) is
experimentally established to account for the structural phase
transition of the Pt (110) surface.

r3 ) -1/0.0135,r2 ) -1.05 r3, r1 ) 0.3 r3, r0 ) -0.026 r3.
The reaction rateskr, kd, andkp are Arrhenius-formulated:ki )
ki0 exp[-Ei/RT], i ) r, d, p. Other constants used in this model
are in ref 7.

The bifurcation diagram of the deterministic model withT
fixed at 540 K is presented in Figure 2a. It is the same as Figure
8 in ref 16 and is reproduced with the help of Matcont,43 a
continuation software in Matlab. See the figure captions for
details. The stable states in the left area of the curves correspond
to oxygen-covered surface, and the right area corresponds to
the CO-covered surface. Our numerical studies are mainly
carried out on the solid arrow (AB), which is slightly above
the upper Hopf bifurcation branch, and the dashed arrow, which
is vertical withpCO ) 45.5× 10-6 mbar.

The bifurcation details on the dashed arrow (Figure 2a) are
plotted in Figure 2b; note that the abscissa axis is not in scale.
From Figure 2b, one can easily divide the parameter scope into
four regions: (1) one stable node; (2) small-amplitude oscillation
(canard trajectory) created by a supercritical Hopf bifurcation
(HB) at pO2 ≈ 151.058× 10-6 mbar coexisting with one
unstable focus; (3) large-amplitude relaxation oscillation, started
by canard explosion atpO2 ≈ 150.7582× 10-6 mbar, ended in
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saddle-node infinite period (sniper) at turning point 1 (TP1) with
pO2 ≈ 142.753× 10-6 mbar, coexisting with the unstable focus;
(4) a saddle-node pair of fixed points, coexisting with one
unstable focus. The saddle and the unstable focus annihilate
each other at turning point 2 (TP2) withpO2 ≈ 130.006× 10-6

mbar.
We give in Figure 2C a complementary interpretation of what

happened on the dashed arrow by drawing the nullclines ofŭ
) 0 andw̆ ) 0 in thew∼u plane. To draw the nullclines on the
w∼u plane, one should first reduce the dimension to 2, which
is originally 3. The validity and the details of the reduction of
dimension of this model had been discussed in ref 7. We just
plot the nullclines of the reduced model in Figure 2c. From the
different intersecting situations of the nullclines, one can easily
understand the bifurcation details of the dynamical systems. The
nullcline (circle) isw̆ ) 0; it does not change with the value of
PCO or PO2 (because of the special form ofh(u), see eq 1). The
other S-shaped curves arepO2 ) 151.058× 10-6, 142.753×
10-6, 136.020× 10-6, 130.006× 10-6 from bottom to top,
respectively. Note that the S-shaped nullclines are common in
excitability and canard explosion.4,20Turning point 1 and turning
point 2 are created when the two nullclines are tangent with
different branches.

We take noise into account by replacingpO2 with [1 + D*ú-
(t)]* pO2 in eq 1. Here,D is noise intensity, andú(t) is a Gaussian
white noise with zero mean〈ú(t)〉 ) 0 and unit variance〈ú-
(t)ú(t′)〉 ) δ(t - t′). We numerically integrate eq 1 using the
explicit Euler forward integrating method with a time step dt
) 0.002 s. We then estimate the power spectral density (PSD)
of the time series ofu, the coverage of CO. From the PSD data,
we can obtain the effective SNR, which is an appropriate
measure of order in the study of stochastic oscillation. It is
defined as the relative height of the peak in the PSD normalized
by its relative width; we refer readers to our previous papers
for a graphical explanation and more information of effective
SNR.34,35

Results and Discussion

To begin, we fix (PCO, PO2) ) (45.5, 151.5)× 10-6 mbar;
the system is in region 1 near the Hopf bifurcation point. The
corresponding curve ofD∼SNR (circle) and the characteristic
periods of the reaction rate oscillation (star) are presented in
Figure 3a. Two maxima of SNR are clear. We then scan along
the dashed arrow fromPO2 ) 151.5 × 10-6 mbar toPO2 )
150.8× 10-6 mbar, which covers region 1 and region 2. The
3D surface ofD∼PO2∼SNR is presented in Figure 3b. One can
see distinctly the different behaviors of the two peaks when
PO2 is varied. As the system shifts from region 1 to region 2,
the peak at low noise intensity becomes higher and moves to
lower noise level until it disappears at the starting point of region
2, while the other keeps a constant height and position even in
region 2. The presence of a peak in region 2 is especially worth
mentioning, because it is contrary to the usual conception that
noise would destroy order in oscillating regions.

The results in Figure 3 can be explained by considering two
factors. First, sustained noise would drive the system from region
1 into region 2 or region 3, since the width of region 2 is very
narrow. While arbitrarily small perturbations can cause the
dynamics to small-amplitude oscillations that correspond to a
so-called stochastic limit cycle20 in phase space, only the
perturbations large enough to drive the system through the
critical canard point would cause the dynamics to display large-
relaxation oscillations, in which even a relatively larger noise
would not influence the deterministic motion very much during

Figure 2. (a) Bifurcation diagram of the model (1) withT fixed at
540 K. The labels h, sn, and sniper are Hopf bifurcation, saddle-node
bifurcation of fixed points, and saddle-node of infinite period bifurca-
tion, respectively. The solid arrow (AB) and the dashed arrow indicate
where numerical simulations have been carried out. (b) The bifurcation
details on the dashed arrow in (a). Note that the abscissa axis is broken
to show details of canard explosion. H denotes Hopf bifurcation. Circles
are periods (right axis) of the corresponding oscillations. Squares are
maximum and minimum in the oscillation of the concentration of CO
(left axis). Lines are steady points of the model: solid, stable; dash,
unstable. The three vertical dash-dot lines are to help the eyes in
dividing the parameter scope into four regions. (c) Nullclines of the
reduced model. Circles are nullcline ofw̆ ) 0. Those that are S-shaped
are nullclines ofŭ ) 0 with different control parameters. From bottom
to top, respectively, Hopf bifurcation (solid); sniper (dash); a comple-
mentary line (dot) to show the coexisting three steady state in region
4, and saddle-node bifurcation (dash dot). The scale ofw is out of
physical bound to give a full exhibition of the nullclines.
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its long refractory part.20 Both types of noise-induced oscillation
undergo coherent resonance,20,22so it is natural that two peaks
appear on the effective SNR curve when noise intensity is
varied. Second, for the different behaviors of the two peaks with
the variation ofPO2 in Figure 3b, we attribute them to the
different properties of the canard trajectory and the large
relaxation loop as is shown in Figure 2b: with the decrease of
PO2, the amplitude and period of the canard trajectory increases
slowly, so the corresponding maximal SNR value increases,
while the amplitude and period of the large relaxation loop keeps
nearly constant in the vicinity of the canard point (please note
the break in the abscissa), so the corresponding maximal SNR
value keeps constant. Note that sniper also involves excitable
properties;44 therefore, the SNR curve would show two peaks:
one peak, monotonically decreasing behavior, and one peak in
regions 1, 2, 3, and 4, respectively (results in region 3 and 4
are not shown).

To get a global knowledge of the noise dynamics of the
model, we scan along segment AB (Figure 2, solid arrow). For
each run, the system is set slightly above the upper Hopf
bifurcation branch by (PCO, PO2) ) (P0

CO, P0
O2 + 0.1) × 10-6

mbar, where (P0
CO, P0

O2) × 10 - 6mbar is on the upper Hopf
bifurcation branch. A and B are located at (P0

CO, P0
O2) )

(38.923, 113.906)× 10-6 mbar and (27.043, 52.365)× 10-6

mbar, respectively. The 3D surface ofD∼PCO∼SNR is pre-
sented in Figure 4a. A transition of structure from two-peak to
one-peak is numerically found to be atPCO ≈ 32.885× 10-6

mbar. We find that this is because the explosion of the canard
trajectory (increase of the period and amplitude) become milder
and milder along the segment AB. The bifurcation diagram at
the transition point shown in Figure 4b helps to explain
phenomenologically the situation.

To further demonstrate the interesting noisy dynamics related
to the deterministic bifurcation features, we fix (PCO, PO2) )
(45.5, 151.5)× 10-6 mbar such that the system is in region 1
and perturb bothPCO andPO2 simultaneously by independent
Gaussian white noise. The 3D surface ofDCO∼DO2∼SNR is
presented in Figure 5. To show the structure clearly, we have
adopted the logarithmic scale for both noise intensities, so there
appears in Figure 5 a rectangular structure which is actually an
elliptic structure if linear scale is adopted for both noise
intensities. The result is rather interesting. First, whetherPCO

or PO2 is perturbed alone, coherent biresonance would occur in
either case. Second, when bothPCO and PO2 are perturbed
simultaneously, coherent biresonance also occurs along the radial
direction. This result confirms the relationship between canard
explosion and coherent biresonance as discussed above.

In this paper, we have numerically investigated the effects
of parameter noise on CO oxidation on platinum surface, using
the pioneer Krischer-Eiswirth-Etrl model, with special concern
regarding the relationship between canard explosion and coher-
ent biresonance. After giving a detailed description of specific
dynamical features of the model, especially the existence of
canard explosion in the vicinity of the Hopf bifurcation, we

Figure 3. (a) Coherent biresonance and the characteristic periods of
reaction rate oscillation. Circles are SNR (left axis); stars are charac-
teristic periods (right axis) of reaction rate oscillation. (b) 3D surface
of. D∼PO2∼SNR. The control parameterPO2 covers region 1 and region
2. The peak which locates at a relatively lower noise level shifts its
position, while the other that has a relatively larger resonant noise level
keeps a constant position and height.

Figure 4. (a) 3D surface ofD∼PO2∼SNR. When scanning along the
solid arrow AB (Figure 2a), the two-peak structure transforms into a
one-peak structure. The transition point is numerically found to be at
PCO ≈ 32.885× 10-6 mbar. (b) Bifurcation diagram at the transition
point. Circles are periods (right axis). Lines are maximum and minimum
in the oscillation of the concentration of CO (left axis). Compare with
Figure 2b. The increase of period and amplitude of oscillation is now
much milder.
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carried out simulations to calculate SNR as in the conventional
study of coherent resonance. The distinct feature of our results
is the bimodal shape of the SNR∼D curve, indicating the
occurrence of coherent biresonance. The relationship between
canard explosion and coherent biresonance is established through
a thorough numerical study on thePCO∼PO2 plane. Moreover,
we attribute the different behaviors of the two peaks on the
D∼SNR∼PO2 surface to the different oscillation properties of
the canard trajectory and the relaxation loop.

Although the present work mainly contributes a model study
of CO catalytic oxidation, one may also address a few points
of its relevance to the physical basis. First, regarding the ever-
growing attention being paid to the constructive roles of noise
in nonlinear systems, the results in this paper demonstrated a
novel phenomenon, coherent biresonance, by illustrating its very
connection to canard explosion. The physical relevance of
coherent biresonance shown here, to our opinion, is a kind of
noise-selecting effect, i.e., different noise level prefers to
sustaining oscillations of different amplitude, frequency, type,
and thus different physical functions. Second, the present work
may also help narrow the gap between experiments and
theoretical study of surface catalytic reactions, bearing in mind
that parameter noises are inevitable in real systems. Because of
the existence of noise-induced oscillation and coherent bireso-
nance, a stochastic model is expected to show rather different
dynamic behavior from the deterministic model, deserving the
consideration of noise an important aspect in theoretical
modeling and making the control of noise in experiments a more
crucial task. Specifically, in the cases when the explosion to
large relaxation oscillations is required to avoid (for instance,
a simple numerical calculation revealed that the production rate
of CO2 in region 3 is much smaller than those in region 2 and
1), the present study helps to clarify the upper boundary of the
noise intensity. Finally, canard explosion has been found in
many chemical and physical systems, and of more significance,
in biological systems . We note that an interesting feature of
the canard phenomenon is that it combines both high sensitivity
and high robustness to noise. The high sensitivity is relevant
with the supercritical Hopf bifurcation, where an ultrasmall noise
can induce sustained oscillation with rather high SNR. While
the robustness is associated with the excitability to relaxation
oscillation, of which the period and amplitude is robust to the
change of noise intensity. Noting that highly sensitivity and
robustness are both of great biological interest, one would expect
that our present work, connecting canard phenomenon and

coherent biresonance, may also find interesting applications in
real living systems.
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